RECLAIMATION OF WASTEWATER USING DRY BIOMASS OF CYANOBACTERIUM OSCILLATORIA TENUIS AG. EX. GOMONT.

Sukha Ram Vishnoi* and P. N Srivastava
Department of Botany, Adarsh Mahavidhyalaya, Jodhpur-342001
Department of Botany, Jai Narain Vyas University, Jodhpur-342005
*Corresponding Author

ABSTRACT
The cyanobacterium Oscillatoria tenuis isolated from a freshwater pond of Gura-Vishnoiyan, was screened for its ability to reduce the physico-chemical parameters of textile wastewater. The physico-chemical parameters such as pH, chloride, total alkalinity and total hardness of the effluent were reduced maximum after addition of 2.0 gm of dry algal biomass/100ml of effluent. The reductions in pH value (14.1%), chloride content (65.1%), total alkalinity (39.7%) and total hardness (63.3%) were significant.

INTRODUCTION
Blue green algae (cyanobacteria) are considered as the most primitive photosynthetic prokaryotes which are supposed to have appeared on this planet during the Precambrian period (Ash and Jenkins 2006). They are most simple photosynthetic, oxygen evolving non-vascular plants having characteristic of both microbes and higher plants (Haande et al. 2010). In terms of biomass production microalgae form the world’s largest group of primary producers. Algae are ubiquitous and can thrive in almost all kinds of habitats, majority of them grow in water bodies and are sensitive to pollution. They quickly respond to environmental changes. This has led several workers to use algae as biological indicators of water quality (Sreenivasan and Doshi 1964, Mishra and Saxena 1990, Srivastava and Prakash 1991). The cationic uptake mechanism through which algae absorbed and concentrated nutrients from the surrounding medium, even when the metal ion concentration were very low was described by Venkatraman et al. (1994). There are large number of textile processing, steel re-rolling, electroplating and chemical processing units around Jodhpur situated in the semi-arid area of western Rajasthan, which discharges huge amount of untreated industrial effluent in the seasonal rivers bed. The effluent seeps in the wells situated on the banks of river and these well are utilized to irrigate the crop plants.

The algae based technology to treat industrial effluents (phycoremediation) has been implemented in a number of industrial effluent treatments in India (Arthi et al. 2008, Hanumantha et al. 2011). The chemical methods of waste water treatment are invariably cost intensive and can not be employed in all industries especially in developing countries like India. Hence in recent years, the importance of biological wastewater treatment systems has attracted the attention of the workers all over the world and has helped in developing relatively efficient, low cost waste treatment systems. The algal systems more particularly the cyanobacteria are not only useful in treating the wastewater but also in producing a variety of useful byproducts from their biomass. During the present investigation the attempts were made to treat the industrially polluted wastewater by using the biomass of cyanobacterium Oscillatoria tenuis which looks efficient, cheap and lasting solution of wastewater treatment and recycling.

MATERIALS AND METHODS
The dry biomass of cyanobacterial species Oscillatoria tenuis used in the present study was isolated from the enrichment culture of Gura-Vishnoiyan pond soil. The blue green alga growing in it have been isolated, identified and mass cultures were developed to study their efficiency to treat compound industrial effluent collected from industrial area in Basni, Jodhpur. The pure mass culture was developed in five liters glass containers. The biomass of algae was harvested and washed with distilled water, dried, powdered and powder was used for the experiments. The experiment was setup using 1.0 gm and 2.0 gm of algal powder added in to100ml compound textile effluent filled in 150 ml Erlenmeyer flask. The different combination sets were analyzed using APHA (1995) for pH, chloride, total alkalinity, and total hardness. The observations were taken after 7 days of incubation.
RESULTS AND DISCUSSION

The untreated textile effluent was reddish brown in colour. Its pH (9.20) was highly alkaline. The values of chloride content (1550 mg/l), total alkalinity (1120 mg/l) and total hardness (860.00 mg/l) were high. The effects of increasing amount of dry biomass of cyanobacterium Oscillatoria tenus on textile wastewater are shown in Table 1&2.

Table 1. Effect of dry algal biomass of Oscillatoria tenus on physico-chemical parameters of Industrial effluent (1.0 g Algal Biomass + 100 ml Industrial effluent)

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Initial value of Ind. Eff.</th>
<th>Ind. Effl. +1.0g Algal Biomass</th>
<th>% Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>9.20</td>
<td>8.30</td>
<td>9.7</td>
</tr>
<tr>
<td>Chloride</td>
<td>1550</td>
<td>945</td>
<td>39.0</td>
</tr>
<tr>
<td>Total alkalinity</td>
<td>1120</td>
<td>830</td>
<td>25.8</td>
</tr>
<tr>
<td>Total hardness</td>
<td>860</td>
<td>525</td>
<td>38.9</td>
</tr>
</tbody>
</table>

Except pH, all parameters are in mg/L, Ind. Effl = Industrial effluent

The study revealed improvement in wastewater characteristics with an increase in algal biomass. The maximum improvement in the physico-chemical parameters of industrial effluent was recorded after 7 days of incubations of 2.0 gm dried biomass of cyanobacterium Oscillatoria tenus (Table 2).

The micro algae Oscillatoria tenus showed efficient removal ability during the present investigation. These finding are important for practical use of such species in large scale biological treatment of industrial wastewater.

Table 2. Effect of dry algal biomass of Oscillatoria tenus on physico-chemical parameters of Textile wastewater (@2.0 g Algal Biomass/ 100 ml Industrial effluent)

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Initial value</th>
<th>Ind. Effl. +2.0g Algal Biomass</th>
<th>% Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>9.20</td>
<td>7.90</td>
<td>14.1</td>
</tr>
<tr>
<td>Chloride</td>
<td>1550</td>
<td>540</td>
<td>65.1</td>
</tr>
<tr>
<td>Total alkalinity</td>
<td>1120</td>
<td>675</td>
<td>39.7</td>
</tr>
<tr>
<td>Total hardness</td>
<td>860</td>
<td>315</td>
<td>63.3</td>
</tr>
</tbody>
</table>

Except pH, all parameters are in mg/L, Ind. Effl = Industrial effluent

Present study revealed cyanobacterium Oscillatoria tenus biomass to be efficient for treating textile effluent. Algal biomass can absorb salts and various ions effectively from the wastewater. This most promising species may help in the optimization of the remediation of textile wastewater before discharging into the aquatic ecosystems. Algae based remediation technology thus, can provide an excellent solution for Industrial pollution problems.

ACKNOWLEDGEMENT

We are grateful to Department of Science and Technology, Govt. of India, New Delhi for the financial support in the form of DST-SERC (Fast Track) Young Scientist Scheme under which the present work was carried out.

REFERENCES


